Name: _____

Instructor:

Math 10560, Exam 3. April 22, 2008

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)

Please do NOT	write in this box.	
Multiple Choice		
10.		
11.		
12.		
13.		
Total		

Name: _____

Instructor:

Multiple Choice

1.(6 pts.) Compute the following limit:

$$\lim_{n \to \infty} \frac{\sin n}{n^2}$$

- (a) ∞ (b) 1 (c) 0
- (d) $\sin n$ (e) Does not exist

2.(6 pts.) Compute the following limit:

(a) 0 (b) 1 (c)
$$\infty$$

(d) 3 (e) $-\infty$

Name:	
Instructor:	

3.(6 pts.) Does the series $\sum_{n=0}^{\infty} \frac{3+2^n}{\pi^{n+1}}$ converge or diverge? If it converges, compute its value.

diverges

(a) converges to
$$\frac{1}{\pi - 3} + \frac{1}{\pi - 2}$$
 (b) converges to $\frac{3}{1 - \pi} + \frac{2}{2 - \pi}$

- (c) converges to $\frac{3\pi}{\pi 1} + \frac{\pi}{\pi 2}$ (d)
- (e) converges to $\frac{3}{\pi 1} + \frac{1}{\pi 2}$

4.(6 pts.) Which of the following statements are true about the series $\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^5 - n^2\sqrt{3}}$? I. This series converges because $\lim_{n \to \infty} \frac{n^2 + 1}{n^5 - n^2\sqrt{3}} = 0$. II. This series converges by Ratio Test. III. This series converges by Limit Comparison Test against the p-series $\sum_{n=1}^{\infty} \frac{1}{n^3}$. (a) II, III only (b) I, II only (c) III only

(d) None (e) I, III only

Name:	
Instructor:	

5.(6 pts.) One of the statements below holds for the series $\sum_{n=1}^{\infty} \frac{\cos(2n)}{n^2+1}$. Which one?

- (a) This series diverges by Ratio Test.
- (b) This series is conditionally convergent.
- (c) This series converges by Alternating Series Test.
- (d) This series is absolutely convergent by Comparison Test.
- (e) This series diverges because $\lim_{n \to \infty} \frac{\cos(2n)}{n^2 + 1}$ is not 0.

6.(6 pts.) Which of the following statements are true about the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$?

- I. This series converges by the Alternating Series Test.
- II. This series converges by the Ratio Test.
- III. This series converges absolutely.
- (a) I, III only (b) I, II only (c) I, II, III
- (d) II, III only (e) None

 Name:

 Instructor:

7.(6 pts.) Compute the radius of convergence of the power series $\sum_{n=1}^{\infty} 2^n (x-1)^{2n}$.

(a) $R = \frac{1}{2}$ (b) R = 2 (c) $R = \infty$ (d) $R = \frac{\sqrt{2}}{2}$ (e) R = 0

8.(6 pts.) Identify the Taylor Series of $f(x) = \sin(x)$ centered at $a = \frac{\pi}{2}$, and its interval of convergence.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, I = [-1, 1)$$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^n (x - \pi/2)^{2n}}{(2n)!}, I = (-\infty, \infty)$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n (x - \pi/2)^{2n+1}}{(2n+1)!}, I = (-\infty, \infty)$

(d)
$$\sum_{n=0} \frac{(-1)^n (x+\pi/2)^{2n}}{(2n)!}, \ I = \left[\frac{\pi}{2} - 1, \frac{\pi}{2} + 1\right)$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n (x - \pi/2)^{2n+1}}{2n+1}, \ I = \left[\frac{\pi}{2} - 1, \frac{\pi}{2} + 1\right)$$

Name:	
Instructor:	

9.(6 pts.) The following is the fourth order Taylor polynomial of the function f(x) at a.

$$T_4(x) = 10 + 5(x-a) + \sqrt{3}(x-a)^2 + \frac{1}{2\pi}(x-a)^3 + 17e(x-a)^4$$

What is f'''(a)?

(a)
$$\frac{1}{2\pi}$$
 (b) $2\sqrt{3}$ (c) $\frac{3}{\pi}$ (d) $\frac{1}{6\pi}$ (e) $17e$

Partial Credit You must show your work on the partial credit problems to receive credit!

10. (10 pts.) a) (5 pts) Give a power series representation for e^{x^2} .

b) (5 pts) Find the limit

$$\lim_{x \to 0} \frac{e^{x^2} - 1 - x^2}{x^4}.$$

 Name:

 Instructor:

11. (12 pts.) Consider the function $f(x) = \frac{1}{2 - 3x}$. a) (4 pts.) Find the Taylor series of f(x) centered at 0.

b) (3 pts.) Determine the radius of convergence of this power series.

c) (4 pts) Find a power series representation for $\frac{1}{(2-3x)^2}$ and give its radius of convergence.

d) (1pt) What is the value of the series you found in part (c) at x = 1/2?

Name: _____ Instructor: _____

12. (12 pts.) Find the interval of convergence of the following power series:

$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n}$$

13. (12 pts.) Use the Integral Test to determine whether the series

$$\sum_{n=2}^{\infty} \frac{\ln(n)}{n^3}$$

is divergent or convergent. You must show that the Integral Test can be used in this situation.

Note: A correct answer with no work is worth only 3 points.

Hint: Use Integration By Parts.

Name: _____

Instructor: <u>ANSWERS</u>

Math 10560, Exam 3. April 22, 2008

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!					
1.	(a)	(b)	(ullet)	(d)	(e)
2.	(a)	(b)	(c)	(•)	(e)
3.	(a)	(b)	(c)	(d)	(ullet)
4.	(a)	(b)	(•)	(d)	(e)
5.	(a)	(b)	(c)	(ullet)	(e)
6.	(•)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(ullet)	(e)
8.	(a)	(•)	(c)	(d)	(e)
9.	(a)	(b)	(ullet)	(d)	(e)

Please do NOT	write in this b	ox.
Multiple Choice		
10.		
11.		
12.		
13.		
Total		